Дисциплина "Высшая математика" изучается студентами всех экономических специальностей университета.
Особенностью современной жизни является проникновение во все сферы человеческой деятельности достижений научно-технического и информационного прогресса, который, в свою очередь, опирается на широкое использование математических знаний. Математические дисциплины играют существенную роль в образовании специалистов не только технического, но и экономического профиля.
Цель дисциплины – овладение студентами необходимым математическим аппаратом, помогающим анализировать, моделировать и решать прикладные экономические задачи.
Задачей преподавания высшей математики является формирование у студентов предметных компетенций в соответствии с требованиями образовательных стандартов.
В соответствии с вышеуказанной задачей выпускник должен так же приобрести следующие компетенции:
академические:
- владеть базовыми научно-теоретическими знаниями и применять их для решения теоретических и практических задач;
- владеть междисциплинарным подходом при решении проблем;
- уметь учиться, повышать свою квалификацию в течение всей жизни;
социально-личностные:
- обладать способностью к межличностным коммуникациям;
- быть способным к критике и самокритике;
- уметь работать в команде;
профессиональные:
- находить оптимальные решения многокритериальных задач.
В результате изучения дисциплины «Высшая математика» обучаемый должен знать:
- методику применения методов матричной алгебры и аналитической геометрии при решении конкретных задач;
- методику применения аппарата функции одной переменной, методов дифференциального исчисления функции одной и нескольких переменных при решении математических и прикладных задач;
- прикладные аспекты интегрального исчисления и дифференциальных уравнений;
- основные определения, теоремы и соотношения теории вероятностей;
- основные законы распределения случайных величин и их практические приложения;
- методы обработки и анализа статистических данных;
- содержание практических задач, подлежащих экономико-математическому моделированию;
- методы и алгоритмы решения оптимизационных экономических и производственных задач;
уметь:
- решать формальные и прикладные задачи матричной алгебры, аналитической геометрии и математического анализа, строить математические модели и решать задачи с экономическим содержанием;
- применять вероятностные и статистические методы при решении задач прикладного характера, осуществлять сбор и обработку статистических данных, применять методы анализа полученных данных;
- моделировать простейшие экономические ситуации, связанные с оптимизацией исследуемых процессов;
- решать оптимизационные задачи методами математического программирования и с использованием пакетов прикладных программ на ПЭВМ;
- обосновывать оптимальное решение и проводить экономический анализ полученных результатов.
Основной программный материал излагается на лекциях и закрепляется на практических занятиях. Часть материала предлагается для самостоятельного изучения. Текущий контроль осуществляется путем опроса на практических занятиях, выполнения самостоятельных работ и индивидуальных заданий.
1. Гусак А.А. Высшая математика. Т. 1, 2. \Учебник для студентов естественных и экономических специальностей вузов. – Мн.: ТетраСистемс, 2003 (и последующие издания).
2. Рябушко А.П., Бархатов В.В., Державец В.В., Юруть И.Е. Индивидуальные задания по высшей математике. Ч. 1. Линейная и векторная алгебра. Аналитическая геометрия. Дифференциальное исчисление функций одной переменной. \Под общ. ред. докт. физ.-мат. наук, проф. А.П. Рябушко. Допущено Министерством образования РБ в качестве учеб. пособия для студентов технических специальностей. - Мн.: Выш. шк., 2007 – 304 с.
3. Рябушко А.П., Бархатов В.В., Державец В.В., Юруть И.Е. Индивидуальные задания по высшей математике. Ч. 2. Комплексные числа. Неопределенные и определенные интегралы. Функции нескольких переменных. Обыкновенные дифференциальные уравнения. \Под общ. ред. докт. физ.-мат. наук, проф. А.П. Рябушко. Допущено Министерством образования РБ в качестве учеб. пособия для студентов технических специальностей. - Мн.: Выш. шк., 2007.- 396 с.
4. Рябушко А.П., Бархатов В.В., Державец В.В., Юруть И.Е. Индивидуальные задания по высшей математике. Ч. 3. Ряды. Кратные и криволинейные интегралы. Элементы теории поля.\ Под общ. ред. докт. физ.-мат. наук, проф. А.П. Рябушко. Допущено Министерством образования РБ в качестве учеб. пособия для студентов технических специальностей. Мн.: Выш. шк., 2007. - 397 с.
5. Рябушко А.П. Индивидуальные задания по высшей математике. Операционное исчисление. Элементы теории устойчивости. Теория вероятностей. Математическая статистика.- Мн.: Выш. шк.., 2006. - 336 с.